
CHAPTER 1: 

INTRODUCTION 

In this chapter, we discuss the aims and goals of this text and briefly review 

programming concepts and discrete mathematics. We will  

 See that how a program performs for reasonably large input is just as 

important as its performance on moderate amounts of input.  

 Review good programming style.  

 Summarize the basic mathematical background needed for the rest of the book. 

 Briefly review recursion.  

1.1. What's the Book About? 

Suppose you have a group of n numbers and would like to determine the kth 

largest. This is known as the selection problem. Most students who have had a 

programming course or two would have no difficulty writing a program to solve 

this problem. There are quite a few "obvious" solutions.  

One way to solve this problem would be to read the n numbers into an array, sort 

the array in decreasing order by some simple algorithm such as bubblesort, and 

then return the element in position k.  

A somewhat better algorithm might be to read the first k elements into an array 

and sort them (in decreasing order). Next, each remaining element is read one by 

one. As a new element arrives, it is ignored if it is smaller than the kth 

element in the array. Otherwise, it is placed in its correct spot in the array, 

bumping one element out of the array. When the algorithm ends, the element in the 

kth position is returned as the answer.  

Both algorithms are simple to code, and you are encouraged to do so. The natural 

questions, then, are which algorithm is better and, more importantly, is either 

algorithm good enough? A simulation using a random file of 1 million elements and 

k = 500,000 will show that neither algorithm finishes in a reasonable amount of 

time--each requires several days of computer processing to terminate (albeit 

eventually with a correct answer). An alternative method, discussed in Chapter 7, 

gives a solution in about a second. Thus, although our proposed algorithms work, 

they cannot be considered good algorithms, because they are entirely impractical 

for input sizes that a third algorithm can handle in a reasonable amount of time. 

A second problem is to solve a popular word puzzle. The input consists of a two-

dimensional array of letters and a list of words. The object is to find the words 

in the puzzle. These words may be horizontal, vertical, or diagonal in any 
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direction. As an example, the puzzle shown in Figure 1.1 contains the words this, 

two, fat, and that. The word this begins at row 1, column 1 (1,1) and extends to 

(1, 4); two goes from (1, 1) to (3, 1); fat goes from (4, 1) to (2, 3); and that 

goes from (4, 4) to (1, 1).  

Again, there are at least two straightforward algorithms that solve the problem. 

For each word in the word list, we check each ordered triple (row, column, 

orientation) for the presence of the word. This amounts to lots of nested for 

loops but is basically straightforward.  

Alternatively, for each ordered quadruple (row, column, orientation, number of 

characters) that doesn't run off an end of the puzzle, we can test whether the 

word indicated is in the word list. Again, this amounts to lots of nested for 

loops. It is possible to save some time if the maximum number of characters in 

any word is known.  

It is relatively easy to code up either solution and solve many of the real-life 

puzzles commonly published in magazines. These typically have 16 rows, 16 

columns, and 40 or so words. Suppose, however, we consider the variation where 

only the puzzle board is given and the word list is essentially an English 

dictionary. Both of the solutions proposed require considerable time to solve 

this problem and therefore are not acceptable. However, it is possible, even with 

a large word list, to solve the problem in a matter of seconds.  

An important concept is that, in many problems, writing a working program is not 

good enough. If the program is to be run on a large data set, then the running 

time becomes an issue. Throughout this book we will see how to estimate the 

running time of a program for large inputs and, more importantly, how to compare 

the running times of two programs without actually coding them. We will see 

techniques for drastically improving the speed of a program and for determining 

program bottlenecks. These techniques will enable us to find the section of the 

code on which to concentrate our optimization efforts.  

   1  2  3  4 

------------- 

1  t  h  i  s 

2  w  a  t  s 

3  o  a  h  g 

4  f  g  d  t 

Figure 1.1 Sample word puzzle 

1.2. Mathematics Review 

This section lists some of the basic formulas you need to memorize or be able to 

derive and reviews basic proof techniques.  
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1.2.1. Exponents 
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1.2.2. Logarithms

 

In computer science, all logarithms are to base 2 unless specified otherwise. 

 

DEFINITION: x

a

 = b if and only if log

x

 b = a 

 

Several convenient equalities follow from this definition. 

 

THEOREM 1.1. 

 

 

 

PROOF: 

 

Let x = log

c 

b, y = log

c

 a, and z = log

a

 b. Then, by the definition of logarithms, c

x

 = b, c

y

 = 

a, and a

z 

= b. Combining these three equalities yields (c

y

)

z

 = c

x

 = b. Therefore, x = yz, which 

implies z = x/y, proving the theorem.  

THEOREM 1.2. 

 

log ab = log a + log b 

 

PROOF: 

 

Let x = log a, y = log b, z = log ab. Then, assuming the default base of 2, 2

x

= a, 2

y

 = b, 2

z

 = 

ab. Combining the last three equalities yields 2

x

2

y

 = 2

z

 = ab. Therefore, x + y = z, which proves 

the theorem.  

Some other useful formulas, which can all be derived in a similar manner, follow. 

 

log a/b = log a - log b
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log(a

b

) = b log a

 

log x < x for all x > 0

 

log 1 = 0,  log 2 = 1,  log 1,024 = 10,  log 1,048,576 = 20

 

1.2.3. Series

 

The easiest formulas to remember are 

 

 

 

and the companion, 

 

 

 

In the latter formula, if 0 < a < 1, then 

 

 

 

and as n tends to , the sum approaches 1/(1 -a). These are the "geometric series" formulas. 

 

We can derive the last formula for  in the following manner. Let S be the sum. 

Then  

S = 1 + a + a

2

 + a

3

 + a

4

 + a
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 + . . .

 

Then 

 

aS = a + a

2

 + a

3

 + a

4

 + a

5

 + . . .

 

If we subtract these two equations (which is permissible only for a convergent series), virtually 

all the terms on the right side cancel, leaving  

S - aS = 1

 

which implies that 

 

 

 

We can use this same technique to compute , a sum that occurs frequently. We write 
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and multiply by 2, obtaining  

 

 

Subtracting these two equations yields 

 

 

 

Thus, S = 2. 

 

Another type of common series in analysis is the arithmetic series. Any such series can be 

evaluated from the basic formula.  

 

 

For instance, to find the sum 2 + 5 + 8 +

. . . 

+ (3k - 1), rewrite it as 3(1 + 2+ 3 +

. . . 

+ k) -

(1 + 1 + 1 +

. . . 

+ 1), which is clearly 3k(k + 1)/2 - k. Another way to remember this is to add 

the first and last terms (total 3k + 1), the second and next to last terms (total 3k + 1), and so 

on. Since there are k/2 of these pairs, the total sum is k(3k + 1)/2, which is the same answer as 

before.  

The next two formulas pop up now and then but are fairly infrequent. 

 

 

 

When k = -1, the latter formula is not valid. We then need the following formula, which is used 

far more in computer science than in other mathematical disciplines. The numbers, H

N

, are known 

as the harmonic numbers, and the sum is known as a harmonic sum. The error in the following 

approximation tends to y  0.57721566, which is known as Euler's constant. 

 

 

 

These two formulas are just general algebraic manipulations. 
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1.2.4. Modular Arithmetic

 

We say that a is congruent to b modulo n, written a  b(mod n), if n divides a - b. 

Intuitively, this means that the remainder is the same when either a or b is divided by n. Thus, 

81  61  1(mod 10). As with equality, if a  b (mod n), then a + c  b + c(mod n) 

and a d  b d (mod n). 

 

There are a lot of theorems that apply to modular arithmetic, some of which require extraordinary 

proofs in number theory. We will use modular arithmetic sparingly, and the preceding theorems 

will suffice.  

1.2.5. The P Word

 

The two most common ways of proving statements in data structure analysis are proof by induction 

and proof by contradiction (and occasionally a proof by intimidation, by professors only). The 

best way of proving that a theorem is false is by exhibiting a counterexample.  

Proof by Induction

 

A proof by induction has two standard parts. The first step is proving a base case, that is, 

establishing that a theorem is true for some small (usually degenerate) value(s); this step is 

almost always trivial. Next, an inductive hypothesis is assumed. Generally this means that the 

theorem is assumed to be true for all cases up to some limit k. Using this assumption, the 

theorem is then shown to be true for the next value, which is typically k + 1. This proves the 

theorem (as long as k is finite).  

As an example, we prove that the Fibonacci numbers, F

0
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1

 = 1, F
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 = 3, F
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 = 5, . . . 

, F
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i

-1 + F
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i

 < (5/3)

i

, for i  1. (Some definitions have F

0 = 

0

, 

which 

shifts the series.)

 

To do this, we first verify that the theorem is true for the trivial cases. 

It is easy to verify that F

1

 = 1 < 5/3 and F

2

 = 2 <25/9; this proves the basis. We assume that 

the theorem is true for i = 1, 2, . . . , k; this is the inductive hypothesis. To prove the 

theorem, we need to show that F

k+1

 < (5/3)

k+1

. We have 

 

F

k 

+ 1= F

k

 + F

k

-1

 

by the definition, and we can use the inductive hypothesis on the right-hand side, obtaining 

 

F

k+1

 < (5/3)

k

 + (5/3)

k-1

 

< (3/5)(5/3)

k+1

 + (3/5)

2

(5/3)

k+1
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< (3/5)(5/3)

k+1

 + (9/25)(5/3)

k+1 

which simplifies to 

 

F

k+1

 < (3/5 + 9/25)(5/3)

k+1

 

< (24/25)(5/3)

k+1

 

< (5/3)

k+1

 

proving the theorem. 

 

As a second example, we establish the following theorem. 

 

THEOREM 1.3. 

 

 

 

PROOF: 

 

The proof is by induction. For the basis, it is readily seen that the theorem is true when n = 1. 

For the inductive hypothesis, assume that the theorem is true for 1  k  n. We will 

establish that, under this assumption, the theorem is true for n + 1. We have  

 

 

Applying the inductive hypothesis, we obtain 

 

 

 

Thus, 

 

 

 

proving the theorem. 

 

Proof by Counterexample
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The statement F

k

  k

2

 is false. The easiest way to prove this is to compute F

11

 = 144 > 11

2

. 

 

Proof by Contradiction

 

Proof by contradiction proceeds by assuming that the theorem is false and showing that this 

assumption implies that some known property is false, and hence the original assumption was 

erroneous. A classic example is the proof that there is an infinite number of primes. To prove 

this, we assume that the theorem is false, so that there is some largest prime p

k

. Let p

1

, p

2

, . 

. . , p

k

 be all the primes in order and consider  

N = p

1

p

2

p

3

. . . 

p

k

 + 1

 

Clearly, N is larger than p

k

, so by assumption N is not prime. However, none of p

1

, p

2

, . . . , 

p

k

 divide N exactly, because there will always be a remainder of 1. This is a contradiction, 

because every number is either prime or a product of primes. Hence, the original assumption, that 

p

k

 is the largest prime, is false, which implies that the theorem is true.  

int

 

f( int x )

 

{

 

/*1*/       if ( x  = 0 )

 

/*2*/              return 0;

 

else

 

/*3*/              return( 2*f(x-1) + x*x );

 

}

 

Figure 1.2 A recursive function

 

1.3. A Brief Introduction to Recursion

 

Most mathematical functions that we are familiar with are described by a simple formula. For 

instance, we can convert temperatures from Fahrenheit to Celsius by applying the formula  

C = 5(F - 32)/9

 

Given this formula, it is trivial to write a C function; with declarations and braces removed, 

the one-line formula translates to one line of C.  

Mathematical functions are sometimes defined in a less standard form. As an example, we can 

define a function f, valid on nonnegative integers, that satisfies f(0) = 0 and f(x) = 2f(x - 1) 

+ x

2

. From this definition we see that f(1) = 1, f(2) = 6, f(3) = 21, and f(4) = 58. A function 

that is defined in terms of itself is called recursive. C allows functions to be recursive.* It 

is important to remember that what C provides is merely an attempt to follow the recursive 

spirit. Not all mathematically recursive functions are efficiently (or correctly) implemented by 

C's simulation of recursion. The idea is that the recursive function f ought to be expressible in 
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only a few lines, just like a non-recursive function. Figure 1.2 shows the recursive 

implementation of f.  

*Using recursion for numerical calculations is usually a bad idea. We have done so to illustrate 

the basic points.  

Lines 1 and 2 handle what is known as the base case, that is, the value for which the function is 

directly known without resorting to recursion. Just as declaring f(x) = 2 f(x - 1) + x

2

 is 

meaningless, mathematically, without including the fact that f (0) = 0, the recursive C function 

doesn't make sense without a base case. Line 3 makes the recursive call.  

There are several important and possibly confusing points about recursion. A common question is: 

Isn't this just circular logic? The answer is that although we are defining a function in terms 

of itself, we are not defining a particular instance of the function in terms of itself. In other 

words, evaluating f(5) by computing f(5) would be circular. Evaluating f(5) by computing f(4) is 

not circular--unless, of course f(4) is evaluated by eventually computing f(5). The two most 

important issues are probably the how and why questions. In Chapter 3, the how and why issues are 

formally resolved. We will give an incomplete description here.  

It turns out that recursive calls are handled no differently from any others. If f is called with 

the value of 4, then line 3 requires the computation of 2 

*

 f(3) + 4 

*

4. Thus, a call is made to 

compute f(3). This requires the computation of 2 

*

 f(2) + 3 

*

 3. Therefore, another call is made 

to compute f(2). This means that 2 

*

 f(1) + 2 

*

 2 must be evaluated. To do so, f(1) is computed 

as 2 

*

 f(0) + 1 

*

 1. Now, f(0) must be evaluated. Since this is a base case, we know a priori 

that f(0) = 0. This enables the completion of the calculation for f(1), which is now seen to be 

1. Then f(2), f(3), and finally f(4) can be determined. All the bookkeeping needed to keep track 

of pending function calls (those started but waiting for a recursive call to complete), along 

with their variables, is done by the computer automatically. An important point, however, is that 

recursive calls will keep on being made until a base case is reached. For instance, an attempt to 

evaluate f(-1) will result in calls to f(-2), f(-3), and so on. Since this will never get to a 

base case, the program won't be able to compute the answer (which is undefined anyway). 

Occasionally, a much more subtle error is made, which is exhibited in Figure 1.3. The error in 

the program in Figure 1.3 is that bad(1) is defined, by line 3, to be bad(1). Obviously, this 

doesn't give any clue as to what bad(1) actually is. The computer will thus repeatedly make calls 

to bad(1) in an attempt to resolve its values. Eventually, its bookkeeping system will run out of 

space, and the program will crash. Generally, we would say that this function doesn't work for 

one special case but is correct otherwise. This isn't true here, since bad(2) calls bad(1). Thus, 

bad(2) cannot be evaluated either. Furthermore, bad(3), bad(4), and bad(5) all make calls to bad

(2). Since bad(2) is unevaluable, none of these values are either. In fact, this program doesn't 

work for any value of n, except 0. With recursive programs, there is no such thing as a "special 

case."  

These considerations lead to the first two fundamental rules of recursion: 

 

1. Base cases. You must always have some base cases, which can be solved without recursion. 

 

2. Making progress. For the cases that are to be solved recursively, the recursive call must 

always be to a case that makes progress toward a base case.  

Throughout this book, we will use recursion to solve problems. As an example of a nonmathematical 

use, consider a large dictionary. Words in dictionaries are defined in terms of other words. When 

we look up a word, we might not always understand the definition, so we might have to look up 

words in the definition. Likewise, we might not understand some of those, so we might have to 

continue this search for a while. As the dictionary is finite, eventually either we will come to 

a point where we understand all of the words in some definition (and thus understand that 

definition and retrace our path through the other definitions), or we will find that the 

definitions are circular and we are stuck, or that some word we need to understand a definition 

is not in the dictionary.  
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int 

bad( unsigned int n )

 

{

 

 

/*2*/            return 0;

 

else

 

/*3*/            return( bad (n/3 + 1) + n - 1 );

 

}

 

Figure 1.3 A nonterminating recursive program

 

Our recursive strategy to understand words is as follows: If we know the meaning of a word, then 

we are done; otherwise, we look the word up in the dictionary. If we understand all the words in 

the definition, we are done; otherwise, we figure out what the definition means by recursively 

looking up the words we don't know. This procedure will terminate if the dictionary is well 

defined but can loop indefinitely if a word is either not defined or circularly defined.  

Printing Out Numbers

 

Suppose we have a positive integer, n, that we wish to print out. Our routine will have the 

heading print_out(n). Assume that the only I/O routines available will take a single-digit number 

and output it to the terminal. We will call this routine print_digit; for example, print_digit(4) 

will output a 4 to the terminal.  

Recursion provides a very clean solution to this problem. To print out 76234, we need to first 

print out 7623 and then print out 4. The second step is easily accomplished with the statement 

print_digit(n%10), but the first doesn't seem any simpler than the original problem. Indeed it is 

virtually the same problem, so we can solve it recursively with the statement print_out(n/10).  

This tells us how to solve the general problem, but we still need to make sure that the program 

doesn't loop indefinitely. Since we haven't defined a base case yet, it is clear that we still 

have something to do. Our base case will be print_digit(n) if 0  n < 10. Now print_out(n) is 

defined for every positive number from 0 to 9, and larger numbers are defined in terms of a 

smaller positive number. Thus, there is no cycle. The entire procedure* is shown Figure 1.4.  

*The term procedure refers to a function that returns void. 

 

We have made no effort to do this efficiently. We could have avoided using the mod routine (which 

is very expensive) because n%10 = n - n/10  

*

 10. 

 

Recursion and Induction

 

Let us prove (somewhat) rigorously that the recursive number-printing program works. To do so, 

we'll use a proof by induction.  

THEOREM 1.4 
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The recursive number-printing algorithm is correct for n  0. 

 

PROOF: 

 

First, if n has one digit, then the program is trivially correct, since it merely makes a call to 

print_digit. Assume then that print_out works for all numbers of k or fewer digits. A number of k

+ 1 digits is expressed by its first k digits followed by its least significant digit. But the 

number formed by the first k digits is exactly n/10 , which, by the indicated hypothesis 

is correctly printed, and the last digit is n mod10, so the program prints out any (k + 1)-digit 

number correctly. Thus, by induction, all numbers are correctly printed.  

void

 

print_out( unsigned int n ) /* print nonnegative n */

 

{

 

if( n<10 )

 

print_digit( n );

 

else

 

{

 

print_out( n/10 );

 

print_digit( n%10 );

 

}

 

}

 

Figure 1.4 Recursive routine to print an integer

 

This proof probably seems a little strange in that it is virtually identical to the algorithm 

description. It illustrates that in designing a recursive program, all smaller instances of the 

same problem (which are on the path to a base case) may be assumed to work correctly. The 

recursive program needs only to combine solutions to smaller problems, which are "magically" 

obtained by recursion, into a solution for the current problem. The mathematical justification 

for this is proof by induction. This gives the third rule of recursion:  

3. Design rule. Assume that all the recursive calls work. 

 

This rule is important because it means that when designing recursive programs, you generally 

don't need to know the details of the bookkeeping arrangements, and you don't have to try to 

trace through the myriad of recursive calls. Frequently, it is extremely difficult to track down 

the actual sequence of recursive calls. Of course, in many cases this is an indication of a good 

use of recursion, since the computer is being allowed to work out the complicated details.  

The main problem with recursion is the hidden bookkeeping costs. Although these costs are almost 

always justifiable, because recursive programs not only simplify the algorithm design but also 

tend to give cleaner code, recursion should never be used as a substitute for a simple for loop. 

We'll discuss the overhead involved in recursion in more detail in Section 3.3.  

When writing recursive routines, it is crucial to keep in mind the four basic rules of recursion: 

页码，11/14Structures, Algorithm Analysis: CHAPTER 1: INTRODUCTION

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



1. Base cases. You must always have some base cases, which can be solved without recursion.  

2. Making progress. For the cases that are to be solved recursively, the recursive call must 

always be to a case that makes progress toward a base case.  

3. Design rule. Assume that all the recursive calls work. 

 

4. Compound interest rule. Never duplicate work by solving the same instance of a problem in 

separate recursive calls.  

The fourth rule, which will be justified (along with its nickname) in later sections, is the 

reason that it is generally a bad idea to use recursion to evaluate simple mathematical 

functions, such as the Fibonacci numbers. As long as you keep these rules in mind, recursive 

programming should be straightforward.  

Summary

 

This chapter sets the stage for the rest of the book. The time taken by an algorithm confronted 

with large amounts of input will be an important criterion for deciding if it is a good 

algorithm. (Of course, correctness is most important.) Speed is relative. What is fast for one 

problem on one machine might be slow for another problem or a different machine. We will begin to 

address these issues in the next chapter and will use the mathematics discussed here to establish 

a formal model.  

Exercises

 

1.1 Write a program to solve the selection problem. Let k = n/2. Draw a table showing the running 

time of your program for various values of n.  

1.2 Write a program to solve the word puzzle problem. 

 

1.3 Write a procedure to output an arbitrary real number (which might be negative) using only 

print_digit for I/O.  

1.4 C allows statements of the form 

 

#include filename

 

which reads filename and inserts its contents in place of the include statement. Include 

statements may be nested; in other words, the file filename may itself contain an include 

statement, but, obviously, a file can't include itself in any chain. Write a program that reads 

in a file and outputs the file as modified by the include statements.  

1.5 Prove the following formulas: 

 

a. log x < x for all x > 0 

 

b. log(a

b

) = b log a 

 

1.6 Evaluate the following sums: 
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1.7 Estimate 

 

 

 

*1.8 What is 2

100

 (mod 5)? 

 

1.9 Let F

i

 be the Fibonacci numbers as defined in Section 1.2. Prove the following: 

 

 

 

**c. Give a precise closed-form expression for F

n

. 

 

1.10 Prove the following formulas: 
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